Selecting the Right Device Driver for PXI Hardware — VISA or IVI?

By Alan Hume
Software Manager — Pickering Interfaces

An ideal test system can be thought of as the sum of its parts—measurement and stimulus hardware,
signal switching, cabling and possibly a mass interconnect system, UUT Power supply, External PC or
embedded controller, Operating System (0S), and the programming environment. Each part is selected
based on parameters such as UUT test parameters, physical dimensions, test times, and budgets.

But one element is missing from the above list — the hardware device drivers. Simply put, the drivers are
the last layer between your programming environment and the test systems hardware. In the case of
PXI, a VISA driver is required under the standard, so every PXI module will have one. So you should not
have to choose, right? Well, Yes & No.

The IVI Foundation (www.ivifoundation.org) has defined a more intelligent device driver standard that

many PXl instrumentation and switching companies also support in addition to the mandatory VISA
layer. There are advantages for many applications.

So how to choose? In the following pages, we will try and define what a driver is and any OS limitations.
Then we’ll examine VISA versus an IVI Driver. You will note there is more information on IVl as compared
to VISA. As the IVI concept is more complex, it was felt that this would be important to the reader. Also,
IVI Switching Drivers will be used as a programming example. The goal is to help you understand the
advantages in certain applications so you can determine if IVl will improve your test strategy.

Remember that not every PXI Module has an IVI driver. But after reading this article, you will be able to
make an intelligent choice of vendor, module, and driver, based on your application.

Operating Systems Supported

The PXI standard requires that PXI modules must support 32-bit Windows® or 64-bit Windows®
operating systems; commonly both are supported.

It can be assumed that all versions of Windows supported by Microsoft® will be supported by the PXI
vendors, although there may be a lag between the release of a new Windows version and the
availability of drivers. At the time of writing most vendors will provide driver support for Windows XP as
well as Windows 7 and 8

Support for earlier versions of Windows may also be available, but since these are no longer fully
maintained and supported by Microsoft, it cannot be assumed they will be provided in the long term.
Note that support for Windows XP ended April 2014 and Windows Vista ended in 2011.

As operating systems evolve, some compatibility problems may occur. For example, Windows 8 requires
signed drivers, whereas Windows XP did not, so a driver developed for Windows XP may not install on
Windows 8. Always check with the hardware vendor that the operating system to be used is fully
supported.

Also take into account that most 32-bit drivers will work on a 64-bit system, so the use of 64-bit
Windows does not necessarily dictate the use of 64-bit drivers.

Other Operating Systems

Other OS’ may be supported but this is not a requirement of the PXI standard. If the user is planning to
use any other OS, checks must be made with the hardware vendors for availability of software support.
To successfully operate a PXI platform the operating system must be able to connect to the PXI bus and
driver software must be available to support that operating system.

Linux

Linux is increasingly being adopted. However, unlike Windows it is not possible to provide a single driver
that will work on any system. The driver must be specifically compiled for the Linux kernel in use. Check
with the PXI card vendor for support on the particular Linux system being used. In general, the vendor
will need to know the precise Linux distribution being used. Some versions of Linux, particularly real-
time versions, are not generally available and may present problems to the PXI card vendor.

Register Level Interface

Where no driver is available for the operating system chosen for the test system, it may be possible to
control a PXI card using low-level register level control. This approach requires that the programmer has
detailed information of the hardware and control techniques, therefore can only be considered if the
PXI module vendor is willing to provide this level of detail.

This route to module control is not recommended except in exceptional circumstances. It is likely to
require a great deal of assistance from the module vendor. Check with the vendor before embarking on
this approach.

DRIVER MODEL

On most operating systems, including Windows, the user cannot interact directly with the hardware but
must access through a driver designed for the purpose.

The kernel driver provides the low-level hardware access in kernel space and exposes an interface in
user space. The kernel driver provides only a very basic low-level interface and typically a further
module Application Programming Interface (API) builds on the kernel to provide an interface better
adapted to the control of that particular module.

More advanced APIs may build on the lower levels to provide increasingly useful interfaces to include
further features and enhancements.

An application program may access

the hardware module using any of Sy
Application
the available APIs; choice will Program
depend on a number of factors ¢
such as the programming Higher Level User space
environment, interchangeability v API
requirements, and even personal f
at P Low Level API
choice. . 3 doiNo
This diagram shows a typical set of [Kemal Drivex
. . < Kernel space

choices available, from low-level

] i Hardware
programming using the kernel)
driver interface through increasing
higher-level APIs that provide A standard Instrument Driver and Programming Layers

progressively better modeling of
the functionality of the particular
hardware module.

VISA is a kernel driver providing hardware control plus resource management. The interface is low level,
providing only basic input/output functionality for module control. Module control at this level may be
very complex and require detailed understanding of the card hardware. Almost all manufacturers will
provide a low-level API that encapsulates specialist knowledge of the hardware module to simplify the
programming task.

Many manufacturers provide an IVl driver. This is a higher-level APl that builds on the lower driver and
may conform to industry standard functionality for the module type.

There may also be more layers than shown above.

In many cases a non-VISA set of drivers will be available. This is useful in cases where VISA is not
available, either due to operating system or licensing limitations. For example, VISA is only available on a
limited number of Linux distributions so the user will be forced to use an alternate kernel interface.

CHOICE OF DRIVER

A VISA interface driver is required by the PXI standard, however, many PXI modules are provided with a
selection of drivers. The user must select the driver most suited to their application and that may also
involve an element of personal choice.

Increasingly IVI (Interchangeable Virtual Instrument) drivers are provided. This driver standard is aimed
specifically at interchangeability, which is discussed in a later section. It may also be required for
particular software tools (notably Switch Executive from National Instruments) that will only handle
modules with an IVI Switch class driver.

In some cases a user may elect to construct a system without using VISA. In this case it is essential to
consult the hardware vendors to verify if a suitable driver is available.

VISA

The VISA (Virtual Instrument Software Architecture) standard was originally created by the VXI plug &
play system alliance and is now maintained by the IVl Foundation (www.ivifoundation.org). The

objective of the standard is to define a way of creating instrument drivers with a degree of
interoperability between different manufacturers’ modules.

The PXI standard encourages the use of the VISA standard; key aspects of VISA are:

* Allows the installation of different drivers from different manufacturers on the same PXI system
without conflicts.

e Uses a standardized VISA 1/0 layer for all I/O functions to ensure interoperability.

¢ Defines a way of writing drivers.

e Adriver that follows the VISA specification uses defined data types and in some cases defined
function names.

* Reduces the process of learning new instruments and the time to develop a test system.

i

The IVI (Interchangeable Virtual Instrument) standard is supported by the IVl Foundation
(www.ivifoundation.org). The aim of IVl is to give a degree of interchangeability, instrument simulation
and, in some cases, higher performance. VI supports all major platforms including PXI, AXle and GPIB.
IVl is a higher-level interface that often uses a lower level driver for the hardware interface; its use may
result in slightly slower speed compared to other drivers.

Goals

The stated objectives of the IVI Foundation are to improve hardware interchangeability by:

¢ Simplifying the task of replacing an instrument with a similar instrument
* Preserve application software if instruments become obsolete
¢ Simplify code re-use from design validation to production

Improve quality by:
¢ Establishing guidelines for driver testing and verification
Improve interoperability by:

* Providing an architectural framework that allows users to easily integrate software from
multiple vendors

* Providing a standard access to driver capabilities such as range checking and state caching

¢ Simulating instruments to allow software development when hardware is not available

* Providing consistent instrumentcontrol in popular programming environments

As with VISA, IVl is a way to standardize driver development but it goes much further. The set of IVI
specifications provides a number of instrument class definitions; each class has a standard interface for
programming, including function names and data types.

By appropriate use of 1VI class drivers a user can develop a system that is hardware independent,
meaning instruments may be easily changed for similar instruments from different vendors without the
need to re-code the users application.

At the time of writing the following classes are defined:

IVI-4.1: viScope Class Specification
This specification defines the VI class for oscilloscopes.

IVI-4.2: IviDmm Class Specification
This specification defines the IVI class for digital multimeters.

IVI-4.3: IviFgen Class Specification
This specification defines the IVI class for function generators.

IVI-4.4: IviDCPwr Class Specification
This specification defines the IVI class for DC power supplies.

IVI-4.5: IviACPwr Class Specification
This specification defines the IVI class for AC power sources.

IVI-4.6: IviSwtch Class Specification
This specification defines the IVI class for switches.

IVI-4.7: IviPwrMeter Class Specification
This specification defines the IVI class for RF power meters.

IVI-4.8: IviSpecAn Class Specification
This specification defines the VI class for spectrum analyzers.

IVI-4.10: IviRFSigGen Class Specification
This specification defines the IVI class for RF signal generators.

IVI-4.12: IviCounter Class Specification
This specification defines the IVI class for counter timers.

IVI-4.13: IviDownconverter Class Specification
This specification defines the VI class for frequency downconverters.

IVI-4.14: IviUpconverter Class Specification
This specification defines the IVI class for frequency upconverters.

IVI-4.15: IviDigitizer Class Specification
This specification defines the IVI class for frequency digitizers.

It is important to remember that the class definition cannot include any vendor-specific features; it
contains only the basic functionality of the instrument type. It also cannot take into account differences
in performance, such as accuracy or speed. In practice it is essential that consideration be given to the

consequences of changing from one manufacturer’s module to another since those modules may not
behave in exactly the same way.

IVI drivers have built-in simulation capability. With this simulation feature is it possible to develop an
application without the instrument being present. This means software development may start before
instruments are delivered, or while being used in another application.

IVI Driver Architecture

An VI Driver is a driver that implements the inherent capabilities defined in the IVI-3.2 Inherent
Capabilities Specification document, regardless of whether it complies with a class specification.

An VI Class Driver is a generic abstract class defining the basic features of instruments of that class as
agreed by the IVI Foundation members. An IVI Specific Driver contains features specific to a particular
vendor that may not be applicable to modules from other vendors. IVl Specific Drivers may be further
sub-defined as an IVI Class-Compliant Specific Driver or as an IVl Custom Specific Driver. An IVI Class-
Compliant Specific Driver provides both the class functionality and additional vendor-specific
functionality.

IVI Driver

VI
Specific Driver

VI
Class-Compliant
Specific Driver

IVI Class Driver

\"]
Custom
Specific Driver

The IVI Driver
(Reproduced from the IVI-3.1 Specification)

Most specifications contain optional class extension capabilities, such as the Scanner function group in
IviSwtch. Being optional, it cannot be assumed that all vendors will provide these capabilities.

Most IVI drivers fall into the IVI Class-Compliant Specific Driver group. This means that the driver is class
compliant but adds further functionality beyond the class definition.

IVI Class Driver

IVI Class Compliant
Specific Driver

IVI Custom Specific
Driver

Inherent Capabilities

Inherent Capabilities

Inherent Capabilities

Base Class Capabilities

Base Class Capabilities

Class Extension Capabilities

Class Extension Capabilities

Instrument Specific
Capabilities Functions
defined by the manufacturer

Instrument Specific
Capabilities Functions
defined by the manufacturer

Further to the above, drivers may be provided with a C interface, COM interface or .NET interface.

Most development environments are capable of interfacing to a C interface driver, and many to a COM

interface; whereas the .NET interface has a more restricted range of environments.

The IVI Configuration Store

Central to the IVI Driver model is the IVI Configuration Store. This diagram shows the relationship

between the various software elements involved when using the IVI system.

(Reproduced from the IVI-3.1 Specification)

Function Calls

The IVI Driver

User - - - eu |--
I
I
I
I
Application :
Program :
I
v
IVI Class >
Driver
i
Configuration
Store
IVI Class-Compliant >
Specific Driver

N

GUI Access

The IVI Configuration Store is an XML file containing definitions and relationships between the various
aspects of a module and its software driver. The IVl software system provides means to access the store
from a driver. Tools to access and manipulate the IVI Configuration Store are available, notably National
Instruments Measurement and Automation Explorer (MAX).

EXAMPLE OF INTERCHANGEABLE SWITCH MODULES

The IVI Switch Class driver is the key to interchangeability. Using this driver allows differences between
software implementations from different vendors to be moved from the user application and dealt with
by the IVI software system.

In the example shown in the figure, a pair of changeover relays is used to connect one of two devices
under test (DUT) to a signal generator and a spectrum analyzer. For this application a coaxial RF switch is
required, National Instruments’ PXI-2599 and Pickering Interfaces’ 40-780-022 are both suitable for this
application, however they use different drivers and have different naming conventions for the switch

channel names as shown in the diagram.

DUT1_IN DUT1_OUT
Pl - nc1 Pl - nc2
NI -nc0 NI -net |
\ \
\ \
\ \
\ DUT1 \
. ¥
Signal Spectrum
Generator - Analyzer
! Of_l_ _|TO I
: / DUT2 : '
!] I !
! I I !
/ I | !
SGEN | | SPA
Pl-coml pyra_IN put2_our FI-com2
NI - com0 Pl - no1 Pl - no2 NI - com1
NI - no0 NI - no1

Changeover relays connecting devices under test

The first step toward interchangeability is to define virtual names for the channel names; these virtual
names will be employed in the user application. The figure below provides screen shots from NI MAX
showing the Virtual Name tables for the NI-2599 and the Pickering 40-780-022 where the differing
naming conventions of the two cards are mapped to a common set of Virtual Names.

File Edit View Tools Help

I+ & My System I Save M Configuration (5 Fevert < Show Help
&l Data Neighborhood
» @8 Devices and Interfaces (= il
il S) ni2599VN
b &1 Software
4 [fffj M Drivers
4 a Logical Names Virtual Name Mappings
&
gt PYLECH Vitual Name Physical Name
4 (gl Driver Sessions SUTEN D
ni2599 1 n
g ni2599VN | DUT1_0UT ncl
| J
- DUTZ_IN nol
780 w
g i DUTZ_0UT nol
B SGEN comd E
& pi780VN SPa pe
(3 Advanced
> &) Remote Systems
«| n] »
< T]+ @Genewl WHnrdware‘ﬁSoﬁware‘ogVinualNams E@Iniﬁal Settings|

File Edit View Tools Help

s My System | b Save M Configuration (5 Fevert <% Show Help I‘
> B Data Neighbort
| @ Devices and Interfaces — B
.« Scales pi780V¥N
> &1 Software
4 (] M Drivers
4 g Logical Names Virtual Name Mappings
- - prog_svf« Vitual Name Physical Name
4 (g Driver Sessions
7 DUT1_IN ncl
ni2599 =
g ni2599VN DUT1_0UT nc2
- DUTZ_IN nol
i780 =
g ik DUTZ_0UT no?
s SGEN com E
& p7SOVN SPA com2
(3 Advanced
> &) Remote Systems
<« m] »

]+ | @Genunl | Hardware | Software| 8 virtual Names S Initial Sming;l

Defining Virtual Names

Next a level of indirection is employed to decouple the specific drivers from National Instruments and
Pickering Interfaces from the user application. The IVI Configuration Store provides this indirection; it
creates the concept of a Logical Name which ‘points’ to a Driver Session, this linkage may be changed
within the store such that a Logical Name may be altered to refer to a different Driver Session. So, if all
the differences between the NI and Pickering drivers can be encapsulated in a pair of Driver Sessions,
then the Logical Name can be simply modified to refer to either Driver Session. The user then creates an

application using the Logical Name. If at some time the alternate module is to be used, then the Logical
Name may be changed to refer to the alternate Driver Session. So, the switch module may be replaced
with one from a different vendor just by changing the linkage of the Logical Name.

In the screen-shot from NI MAX shown below, the logical name ‘prog_sw’ is linked to the driver session
for the Pickering 40-780-022.

i780VN - Measurer 0
File Edit View Tools Help
l4 & My System I Save M Configuration (5 fevert < Show Help
[3 Data Neighborhood
&' Devices and Interfaces (2w {780VN 2
4 Scales B
&1 Software
 (fffi M Drivers
4 g Logical Names Virtual Name Mappings
- pvog_S\fv ‘ Virtual Name Physical Name
4 (g Driver Sessions [
& ni2599 DUT1_IN ncl
& ni2509VN : gz%&m "f
& pireo | < i
& pizsoLa | but2_out no2 X
& | SGEN coml -
&) pi780VN e)

(3 Advanced
) Remote Systems

Add

m] »

«
F—TT— l@ Gengvall@ Hurdwareiﬁ Software |8 Virtual Names §|§1nitial Settings

A screen-shot from NI MAX

It must be remembered at all times that only differences in software implementations can be
interchanged; hardware and performance differences cannot be incorporated.

The user application should code using the IVI Swtch Class Driver thus:
err = lviSwtch_init(“prog_sw”, 0, 0, &vi);

err = IviSwtch_Connect(vi, “DUT1_IN", “SGEN");

err = lviSwtch_Connect(vi, “DUT1_OUT”, “SPA”);

This code uses a Logical Name to identify the hardware/software combination and uses Virtual Names
to identify the switch terminal channels. It provides completely interchangeable code in that the Logical
Name and the Virtual Names may be manipulated in the IVI Configuration Store at any time to permit
this code segment to operate different switch modules from different manufacturers without the need
to modify the code.

If at some time in the future a new switch product from a different vendor becomes available, all that is
required is to create a new Driver Session that defines the driver to be used and the Virtual Name table
to define the relationship to the channel names exported by that new driver. The Logical Name may

then be modified to link to the new Driver Session and the user application will then use the new
module without the need to modify or re-build the application.

Conclusion

As you can see, there are many factors to consider. But it is better to do your research up front to
simplify your integration projects. If you need further information, please contact the PXISA and the PXI
Vendors being used in your system.

Reprinted with permission from Pickering Interfaces “PXIMate”: A practical guide to using PXI”
Copyright 2014 Pickering Interfaces — All rights reserved

About Alan Hume:

Alan Hume is the Software Manager for Pickering Interfaces, a market innovator in signal switching and
conditioning for a broad range of applications and industries.

He graduated from Middlesex Polytechnic (Middlesex University), UK in 1975 with an Honors Degree in
Engineering and obtained a Master’s Degree in CADCAM in 1990.

Alan has previously held senior design engineering positions with: Marconi Instruments (now part of
Aeroflex), Hewlett Packard (now Keysight), Seagate Software and Dage Precision Industries.

